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Pathogens have been the strongest selective

pressure through human evolution o
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1928: Discover of penicillin, the first natural antibiotic.

Louis Pasteur

1885: rabies vaccine.
Vaccines against diphtheria,
tetanus, anthrax, cholera,
plague, typhoid, tuberculosis,
and more were developed
through the 1930s.

Adapted from Casanova & Abel (2005) JEM



The molecular traces of natural selection in the
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Natural selection on the immune system
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Our approach to study selection on immune-related processes
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|. Ancestry-associated differences in immune responses
. Variation in immune responses to bacterial pathogens
. Single cell resolution map of immune variation to flu infection
. The impact of past pandemics to the evolution of immune responses
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175 individuals ‘H' rll wmm I European ancestry
African ancestry

Genetic Ancestry Drives Population
Differences in Immune {
Bacterial infection
Responses to Pathogens Listeria & Salmonella l’_\@ Macrophages
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Natural Selection Contributed to Ancestry-Associated

Differences in Immune response
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I. Ancestry-associated differences in immune responses

. Single cell resolution map of immune variation to flu infection
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Ancestry differences in immune regulation
at single cell resolution

90 individuals 1\ 1\ 1‘ ’H‘ ’ﬁ‘ ’ﬁ‘ ke

single-cell RNAseq
mock AV e
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0000

236,993 cells

O O O & mock and IAV
&) genotyping
culture PBMCs infect with “mm
influenza A/Cal/04/09 TR

180 samples, paired mock-exposed and IAV-infected
(MOI = 0.5) samples from each of 90 individuals

Haley Randolph

Randolph, et al. (2021) Science



Clustering separates cells into five major

populations

Dataset: 235,161 high-quality RNA-seq profiles retained after filtering

CD4'T




RESULTS | Monocytes are the most

responsive to IAV infection

044 upregulated X
downregulated
<)
0.3 %
- = :
% O 8=
& ©
5 3
0] a—
a o o
c " e
g 2 1<
S S 4
o | .
o ; o
o v
) " s a
0= oo o
o | | | | | |
’ CDAT CDS8T NK monocytes PBMC B CD4T CD8T NK monocytes

*38% of the monocyte transcriptome changes in response to IAV infection



between African- and European-ancestry individuals

RESULTS | Differences in immune response

genome sequencing for the 90 individuals in the study.

4X) whole
- After imputation we obtained genotypes across >60 million SNPs per individual.
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RESULTS | Differences in immune response
between African- and European-ancestry individuals -

Population Differently Expressed genes Population Differently Responsive genes
pop-DE genes A pop-DR genes

Gene expression
log2 fold change




RESULTS | Most genetic ancestry effects are cell-type specific

number popDE genes
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~52% of popDE genes identified in only one or two cell types



RESULTS | Interferon pathways exhibit higher expression

in individuals with increased European ancestry S—
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RESULTS | Interferon pathways exhibit higher expression

in individuals with increased European ancestry -

Mean Pearson’s r across cell types =-0.26
Fisher’'s meta-p = 2.9x10-6
0.1+ mock
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African genetic ancestry

European-ancestry individuals engage a stronger interferon response to IAV infection



RESULTS | An early stronger interferon response is
associated with better viral clearance at later time points -

10 individuals with the strongest and p =0.007
weakest transcriptional IFN response low = — L
(6 hours post-infection)
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Individuals better able to mount type | IFN responses shortly after
infection are also better able to limit viral replication at later time points.



RESULTS | Genetic drivers of population differences

In immune response -

eGenes were 3.2 to 6.5 X more
likely be classified as popDE than

We identified 2,234 genes (eGenes) that are
expected by chance
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RESULTS | Genetic drivers of population differences

In immune response

CDA4T, nGene = 506 monocytes, nGene = 374
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Among popDE genes in which we identify at least one cis-eQTL across cell types and conditions,
we estimate that, on average, cis-eQTLs explain approximately 53% of the variance in the
observed population differences



Do genetic ancestry-associated differences in immune responses partially underlie
some of the observed variation in COVID-19 susceptibility?

» Association with age, sex, race/ethnicity, and underlying comorbidities and risk of COVID-19 hospitalization
+ CDC estimates a 79% higher rate of influenza-related hospitalizations for Black versus white Americans

Risk for COVID-19 infection, hospitalization, and death by race/ethnicity

Cases' 1.6x 0.6x 1.0x 1.6x
Hospitalization? 3.3x 0.8x 2.6X 2.5x
Death? 2.2x 0.9x 1.9x 2.1x

Much of these differences in morbidity/mortality can be attributed to health disparities due to structural
inequities, but might immune response variation compound existing health disparities?

Data from the Centers for Disease Control and Prevention (November 2021), Ko et al., Clinical Infectious Diseases (2021)



RESULTS | Can ancestry-associated differences in immune response

to viruses explain health disparities in COVID-19 outcomes?
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*Re-analysis of Su et al. dataset (Cell, 2020)



Some take home messages:

- Genetic ancestry effects on the immune response to IAV are common but highly cell type specific.

- Increased European ancestry is associated with a stronger type | IFN response shortly after
influenza infection, which in turn predicts reduced viral titers at later time points.

- cis-eQTLs explain approximately 53% of the variance in the observed population differences.

« Genes differentially expressed by genetic ancestry are enriched among genes associated with COVID-19
disease severity. Variation in the immune response may interact with or exacerbate
environmentally driven health disparities in viral susceptibility.



I. Ancestry-associated differences in immune responses

. The impact of past pandemics to the evolution of immune responses




COVID-19 susceptibility and past selective

events

Article

The major geneticrisk factor for severe
COVID-19isinherited from Neanderthals

ARTICLES

nawmre,, .
medicine

Mips/dol.org N103038/541595-02

M) Coach v uptuten

A Neanderthal OAS1 isoform protects individuals
of European ancestry against COVID-19
susceptibility and severity



Europe, killing 30-50% of the popula :
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Study-design:

Studied genetic variation around immune-related genes from
321 ancient DNA samples from two European populations

directly before, during, and after the Black Death

Targeted enrichment for:

Exons: exons from 356 immune-
related genes.

Neutral loci: 200 regions of 1.5kb.
GWAS loci: 446 SNPs associated with
immune-related phenotypes.

Klunk et al. 2019 (AJPA)




Immune loci are strongly enriched for highly
differentiated sites

London

Fold-enrichment (log2)

0.80 0.85 0.90 0.95 1.00
FsT percentile (based on neutral variants)

MAF bin ® 0% to 10% @ 10% to 20% ® 20% to 30% @ 30% to 40% @ 40% to 50%

For variants with a MAF>30% highly-differentiated sites are found at 3.9x the rate expected by chance
(binomial test p = 1.16x107%4)



Immune loci are strongly enriched for highly

differentiated sites
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We identified 245 variants that are highly differentiated within London



Functional impact of putatively selected loci

N’. pestis
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bulk sequencing of macrophages
single-cell sequencing of PBMCs

Mari Cobb & Anne Dumaine



Functional impact of putatively selected loci

Macrophages from 30 individuals infected with Y. Pestis

locus 1 locus 2 locus 3 locus 4
(tag SNP: rs2549794) (rs17473484) (rs1052025) (rs11571319)

ks

expression following infection
(log2 fold-change)
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The protective allele is associated with increased

levels of ERAPZ2
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The protective allele is associated with increased

levels of ERAPZ2

PBMCs using single-cell RNA sequencing, on a panel of 10 individuals, 5 of which were homozygous for
the protective rs2549794 C allele and 5 of which are homozygous for the T allele

151 B cells
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The protective allele is associated with increased

levels of ERAP2
ERAP2 Expression
Homozygous T Homozygous C
(deleterious)

UMAP_2

(protective) t

relative expression

UMAP 1 0 025 05 075 1




The protective allele is associated with increased

levels of ERAP2

Andres et al. 2010 (PLoS Genetics)



Increased ERAP2 seems to have been protective

during Black Death

ERAP1 and ERAP2 are aminopeptidases that work synergistically to trim peptides so that
they can be presented to CD8* T cells by MHC class |
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Functional depiction of ERAP2 protective allele

Is the ERAP2 genotype was associated with variation in the cytokine response to Y. pestis infection?

G-CSF IL1B
p=0.0155 p = 0.00262

N
N

.

What we did: we infected MDMs from

+ %5 ' 25 individuals with virulent Y. pestis and
0. 1 2

measured the protein levels of 10
cytokines involved in various aspects of
the immune response.
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Some take home messages: S—— S ————

Black Death was an important selective force that shaped genetic diversity around some immune loci.

We speculate that the selective advantage provided by the ERAP2 variant stems from an increased ability
to present Yersinia-derived antigens to CD8"* T cells and/or variation in the cytokine response upon
infection.

Our results also highlight the contribution of natural selection to present-day susceptibility towards
chronic inflammatory and autoimmune diseases: the ERAP2 variant identified as protective against the
plague, is a known risk factor for Crohn’s disease. Our data suggests that selection in response to plague is
part of a recurring tradeoff between infectious and autoimmune disorders.
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